39 research outputs found

    Experiments on Aluminum-Copper Alloys Properties as Solar Absorbers

    Get PDF
    Abstract In this paper, selecting absorber materials for solar collectors is experimentally investigated. Copper and aluminum alloys were cast at four different percentages of each, then their grain structure was examined and comprehensive solar tests were conducted to measure the heat capacity of each alloy and compare that with the available solar irradiance available at the test site at the Hashemite University in Zarqa, Jordan

    Outlook of carbon capture technology and challenges

    Get PDF
    The greenhouse gases emissions produced by industry and power plants are the cause of climate change. An effective approach for limiting the impact of such emissions is adopting modern Carbon Capture and Storage (CCS) technology that can capture more than 90% of carbon dioxide (CO2) generated from power plants. This paper presents an evaluation of state-of-the-art technologies used in the capturing CO2. The main capturing strategies including post-combustion, pre-combustion, and oxy – combustion are reviewed and compared. Various challenges associated with storing and transporting the CO2 from one location to the other are also presented. Furthermore, recent advancements of CCS technology are discussed to highlight the latest progress made by the research community in developing affordable carbon capture and storage systems. Finally, the future prospects and sustainability aspects of CCS technology as well as policies developed by different countries concerning such technology are presented

    Graphene synthesis techniques and environmental applications

    Get PDF
    Graphene is fundamentally a two-dimensional material with extraordinary optical, thermal, mechanical, and electrical characteristics. It has a versatile surface chemistry and large surface area. It is a carbon nanomaterial, which comprises sp2 hybridized carbon atoms placed in a hexagonal lattice with one-atom thickness, giving it a two-dimensional structure. A large number of synthesis techniques including epitaxial growth, liquid phase exfoliation, electrochemical exfoliation, mechanical exfoliation, and chemical vapor deposition are used for the synthesis of graphene. Graphene prepared using different techniques can have a number of benefits and deficiencies depending on its application. This study provides a summary of graphene preparation techniques and critically assesses the use of graphene, its derivates, and composites in environmental applications. These applications include the use of graphene as membrane material for the detoxication and purification of water, active material for gas sensing, heavy metal ions detection, and CO2 conversion. Furthermore, a trend analysis of both synthesis techniques and environmental applications of graphene has been performed by extracting and analyzing Scopus data from the past ten years. Finally, conclusions and outlook are provided to address the residual challenges related to the synthesis of the material and its use for environmental applications

    Energy Storage for Water Desalination Systems Based on Renewable Energy Resources

    Get PDF
    Recently, water desalination (WD) has been required for the supply of drinking water in a number of countries. Various technologies of WD utilize considerable thermal and/or electrical energies for removing undesirable salts. Desalination systems now rely on renewable energy resources (RERs) such as geothermal, solar, tidal, wind power, etc. The intermittent nature and changeable intensity constrain the wide applications of renewable energy, so the combination of energy storage systems (ESSs) with WD in many locations has been introduced. Thermal energy storage (TES) needs a convenient medium for storing and hence reuses energy. The present work provides a good background on the methods and technologies of WD. Furthermore, the concepts of both thermal and electrical energy storage are presented. In addition, a detailed review of employing ESSs in various WD processes driven by RERs is presented. The integration of energy storage with water desalination systems (WDSs) based on renewable energy has a much better capability, economically and environmentally, compared with conventional desalination systems. The ESSs are required to guarantee a constant supply of fresh water over the day

    Concentrating solar power (CSP) technologies: Status and analysis

    Get PDF
    Concentrated solar power (CSP) technology is a promising renewable energy technology worldwide. However, many challenges facing this technology nowadays. These challenges are mentioned in this review study. For the first time, this work summarized and compared around 143 CSP projects worldwide in terms of status, capacity, concentrator technologies, land use factor, efficiency, country and many other factors. Further, the various challenges facing the spread-out of this system are highlighted in terms of the heat transfer fluids (HTF), various energy storage (ES) technologies, cooling techniques, water management, and the Levelized Cost of Electricity (LCOE). Also, various thermophysical properties of the HTF are compared within the applicable range of the CSP operation. At the end of the review, various hybridization technologies for the CSP with various renewable energy sources, including photovoltaic, wind, and geothermal, are highlighted and compared. The pioneering country in using CSP, leading concentrator technology, suitable ES technology, and efficient hybrid technique based on the LCOE are determined. The analyzed data in this study is essential for predicting the future of the CSP in the markets and its contribution to reducing global warming potential

    State-of-the-art technologies for building-integrated photovoltaic systems

    Get PDF
    Advances in building-integrated photovoltaic (BIPV) systems for residential and commercial purposes are set to minimize overall energy requirements and associated greenhouse gas emissions. The BIPV design considerations entail energy infrastructure, pertinent renewable energy sources, and energy efficiency provisions. In this work, the performance of roof/façade-based BIPV systems and the affecting parameters on cooling/heating loads of buildings are reviewed. Moreover, this work provides an overview of different categories of BIPV, presenting the recent developments and sufficient references, and supporting more successful implementations of BIPV for various globe zones. A number of available technologies decide the best selections, and make easy configuration of the BIPV, avoiding any difficulties, and allowing flexibility of design in order to adapt to local environmental conditions, and are adequate to important considerations, such as building codes, building structures and loads, architectural components, replacement and maintenance, energy resources, and all associated expenditure. The passive and active effects of both air-based and water-based BIPV systems have great effects on the cooling and heating loads and thermal comfort and, hence, on the electricity consumption

    Renewable Energy and Energy Storage Systems

    Get PDF
    The use of fossil fuels has contributed to climate change and global warming, which has led to a growing need for renewable and ecologically friendly alternatives to these. It is accepted that renewable energy sources are the ideal option to substitute fossil fuels in the near future. Significant progress has been made to produce renewable energy sources with acceptable prices at a commercial scale, such as solar, wind, and biomass energies. This success has been due to technological advances that can use renewable energy sources effectively at lower prices. More work is needed to maximize the capacity of renewable energy sources with a focus on their dispatchability, where the function of storage is considered crucial. Furthermore, hybrid renewable energy systems are needed with good energy management to balance the various renewable energy sources’ production/consumption/storage. This work covers the progress done in the main renewable energy sources at a commercial scale, including solar, wind, biomass, and hybrid renewable energy sources. Moreover, energy management between the various renewable energy sources and storage systems is discussed. Finally, this work discusses the recent progress in green hydrogen production and fuel cells that could pave the way for commercial usage of renewable energy in a wide range of applications

    Micromobility: Progress, benefits, challenges, policy and regulations, energy sources and storage, and its role in achieving sustainable development goals

    Get PDF
    Micromobility is dominant in urban areas, enhancing the transportation sustainability and assisting in fulfilling the United Nations Sustainable Development Goals (SDGs). This work provides an overall assessment of micromobility: its role under SDGs, policy options, micromobility regulations, emerging technologies, utilisation determinants, energy source, and energy storage. The analysis shows that micromobility could play a major role in achieving the SDGs, specifically SDG 3 (Good Health and Well-being) by lowering toxic gas emissions and reducing projected traffic accidents. Also, the effect on SDG 8 (Decent Work and Economic Growth) by reducing the transportation footprint, on SDG 11 (Sustainable Cities and Communities) by increasing transposition accessibility, reducing traffic congestion and improving the air quality, and equally on SDG 12 (Responsible Consumption and Production) by reducing transportation footprint and increase the sources efficiency. Moreover, micromobility affects SDG 13 (Climate Action) by reducing the greenhouse gases. Furthermore, the analysis shows a clear gap in literature and publications on micromobility, especially in energy management and energy storage area. This review shows that new technology of renewable energy and energy storage could play a significant role in achieving the sustainability of micromobility therefore achieving the SDGs

    Prospect of Post-Combustion Carbon Capture Technology and Its Impact on the Circular Economy

    Get PDF
    The sudden increase in the concentration of carbon dioxide (CO2) in the atmosphere due to the high dependency on fossil products has created the need for an urgent solution to mitigate this challenge. Global warming, which is a direct result of excessive CO2 emissions into the atmosphere, is one major issue that the world is trying to curb, especially in the 21st Century where most energy generation mediums operate using fossil products. This investigation considered a number of materials ideal for the capturing of CO2 in the post-combustion process. The application of aqueous ammonia, amine solutions, ionic liquids, and activated carbons is thoroughly discussed. Notable challenges are impeding their advancement, which are clearly expatiated in the report. Some merits and demerits of these technologies are also presented. Future research directions for each of these technologies are also analyzed and explained in detail. Furthermore, the impact of post-combustion CO2 capture on the circular economy is also presented

    Metal-Air Batteries—A Review

    Get PDF
    Metal–air batteries are a promising technology that could be used in several applications, from portable devices to large-scale energy storage applications. This work is a comprehensive review of the recent progress made in metal-air batteries MABs. It covers the theoretical considerations and mechanisms of MABs, electrochemical performance, and the progress made in the development of different structures of MABs. The operational concepts and recent developments in MABs are thoroughly discussed, with a particular focus on innovative materials design and cell structures. The classical research on traditional MABs was chosen and contrasted with metal–air flow systems, demonstrating the merits associated with the latter in terms of achieving higher energy density and efficiency, along with stability. Furthermore, the recent applications of MABs were discussed. Finally, a broad overview of challenges/opportunities and potential directions for commercializing this technology is carefully discussed. The primary focus of this investigation is to present a concise summary and to establish future directions in the development of MABs from traditional static to advanced flow technologies. A systematic analysis of this subject from a material and chemistry standpoint is presented as well
    corecore